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Abstract 

This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography 

(CT) images.  Several studies have shown that the commercial value of resulting boards can be increased substantially if 

log sawing strategies are chosen using prior knowledge of internal log defects.  Although CT imaging offers a potential 

means of obtaining this knowledge, the automated analysis of the resulting images is difficult, particularly for hardwood 

species, because of the natural texture/density variations within the wood material.  In spite of the difficulties, a few 

researchers have developed image-analysis systems that demonstrate good statistical accuracy in locating and identifying 

defects to create “classified” images.  Even with good quantitative results, however, classified images can often be 

improved qualitatively through postprocessing steps that refine the shapes of the detected image regions.  To be most 

effective, postprocessing operations should utilize domain knowledge that is specific to the type and position of different 

defects.  This paper describes an interactive approach for acquiring this domain knowledge.  A system has been 

developed that generates postprocessing rules by observing the operations that are performed as a human user 

interactively edits a classified CT image.  Based on these observations, the system infers rules that can be used 

subsequently for automatic postprocessing of CT images.  The system is incremental, in that the system is capable of 

updating its rules at a later time.  Laboratory tests have shown good improvements to classified images from two red oak 

logs.

1. Introduction 

Decreasing wood resources and increasing demand for lumber have driven the hardwood industry to 

find improved methods for converting logs to lumber.  Conventional practices for log processing, 

particularly during sawing operations, result in a considerable amount of waste.  Several studies have 

shown that the commercial value of resulting boards can be increased substantially if sawing strategies 

are chosen using knowledge of internal defects ([4],[6],[17],[23]).

One method of obtaining information concerning the internal structure of logs is through computed 

tomography (CT) imaging.  This nondestructive technique provides image “slices” that represent 

physical, cross-sectional density distributions of a scanned object.  Because of the large amount of data 

that is typically collected during CT scanning, it is desirable to have automated techniques that can 

quickly analyze the images to locate and identify defects, and to propose breakdown strategies.   

Researchers at Virginia Tech and at the Southern Research Station of the USDA Forest Service have 

developed an approach that uses artificial neural networks (ANNs) to classify CT pixels individually, 

using small neighborhoods of CT density values as input feature vectors ([12],[18],[19]).  The ANN 

assigns a label (“knot,” “decay,” “split”, “bark,” or “clear wood”) to each foreground pixel in the 

image.  In several studies, the results have been quite good statistically, with classification accuracies 

often exceeding 92% ([12],[18]).
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In spite of the quantitative success of the approach, the resulting image classification from the ANN 

can often be refined through postprocessing.  In some cases, for example, the ANN produces small 

spurious regions that do not seriously affect the statistical accuracy, but are qualitatively undesirable 

and may adversely affect subsequent analysis of the log.  As another example, the ANN occasionally 

assigns incorrect labels to the outside border of the wood, because these portions of the log appear as 

low-density points due to spatial quantization effects.  A postprocessing step can make use of global, 

domain-specific information to refine regions, thereby offsetting the ANN's heavy reliance on local 

pixel neighborhoods. 

There are several difficulties in designing a postprocessing module, however. Although many 

postprocessing steps can be easily implemented, different situations (possibly depending on the 

species of wood, on particular defect types, on the intended use of a log, and on personal preferences 

of the user) may require different types and degrees of region refinement.  For these reasons, we are 

developing a system that can learn postprocessing rules automatically.  The system observes the steps 

taken as a human user interactively edits a processed image, and then infers rules from those actions. 

During the system’s “learn mode,” the user views labeled images and makes refinements through 

the use of a keyboard and mouse.  As the user manipulates the images, the system stores information 

related to those manual operations, and develops internal rules that can be used later for automatic 

postprocessing of other images.  After one or more training sessions, the user places the system into its 

“run mode.”  The system then accepts new images, and uses its rule set to apply postprocessing 

operations automatically in a manner that is modeled after those learned from the human user.  At any 

time, the user can return to learn mode to introduce new training information, and this will be used by 

the system to updates its internal rule set.  

The system does not simply memorize a particular sequence of postprocessing steps during a 

training session, but instead generalizes from the image data and from the actions of the human user so 

that new CT images can be refined appropriately.  Because it learns from a human "teacher," this 

approach represents a form of supervised machine learning.  However, the level of supervision is 

relatively mild by traditional machine-learning standards, because the teacher does not need to be 

knowledgeable concerning internal feature spaces or representations for rule selection.  Because of its 

ability to accept new training inputs over time, the system is said to perform “incremental” (or 

“dynamic” or “on-line”) learning.  This contrasts with many machine-learning systems, which require 

all training data to be made available at the beginning.  Such systems perform “batch” (or “static”) 

learning.

The next section of this paper provides an overview of the approach.  Section 3 provides more 

details concerning the inferencing procedure that we have chosen for the prototype system.  Section 4 

presents some results that have been obtained using the system, and Section 5 contains concluding 

remarks. 

2. System Overview 

The overall classification system consists of three modules: (1) a preprocessing module, (2) an 

artificial neural network (ANN) module that performs tentative image segmentation/classification, and 

(3) a postprocessing module, which is the primary topic of this paper.  The preprocessing module 

distinguishes wood from background (air) and internal voids, and normalizes CT density values.  The 

ANN module labels each non-background pixel of a CT slice using histogram-normalized values from 
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small windows of size 3×3×3 or 5×5, centered on each pixel location to be classified.  In the 

postprocessing module, morphological operations are applied to remove spurious regions and to refine 

region shapes. 

Figure 1 illustrates the nature of the problem with an example image slice of a red oak (Quercus

rubra, L.) log.  In the figure, output from an ANN appears on the right without postprocessing.  (This 

particular ANN was purposely over-trained, to provide a somewhat exaggerated need for 

postprocessing.)  It can be seen, for example, that the ANN has correctly located a split near the center 

of the image, but has also incorrectly applied the split label to some of the annual rings.  The large 

knot region above the split, and to the left, has an irregular shape that is difficult even for human 

observers to delineate precisely.  For the knot, the ANN has produced several small regions that should 

be merged or removed for aesthetic reasons.  Another problem is the relatively large bark region that 

appears incorrectly at the top of the knot region.

Many of these incorrect labels have a negligible effect on statistical classification accuracy, which 

depends on pixel counts alone.  Qualitatively, however, the removal of several small regions and the 

smoothing of region contours can be desirable.  Most of the needed changes can be accomplished with 

relatively simple postprocessing steps.  The difficulty lies in the development of rules that determine 

when to apply these simple steps.  For example, the true split region near the center of Figure 1(b) is 

relatively small in size.  A filter that indiscriminately removes all regions smaller than some threshold 

may also remove valid defect region such as this.  Because it is difficult to manually specify an 

exhaustive set of rules that will work well for all possible situations, the emphasis of this research has 

been to allow the machine to develop its own rules, based on observations of a human user. 

(a) (b) 

Figure 1. Output for a red oak log, without postprocessing.  (a) CT slice to be analyzed.   

(b) Output of ANN classifier. The tan color represents the clearwood region. Red represents knot 

locations, and we can see several small regions that should be removed.  Yellow represents splits, 

and this label has been assigned incorrectly to several annual rings near the log’s center.  Brown 

represents bark, and green represents decay.  (For this example, we purposely used an over-trained 

neural network, which tends to generate output that is relatively low in accuracy.) 
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3. Interactive Learning Postprocessing System 

3.1 System Architecture 

Our system, like many supervised machine-learning systems, operates in two different modes:  a learn 

mode and a run mode.  As depicted in Figure 2, during the learn mode our system provides a graphical 

user interface that allows a human user to edit classified images.  The user selects image operators 

from a menu, designates portions of the image to be processed, and observes the results.  This 

interaction can continue until the user is satisfied with the resulting labeling for any number of training 

images. 

Most image-editing operators provided by the system are based on mathematical morphology ([9], 

[19]), which is well suited for modifying region shapes.  The menu selections include such region 

operators as remove, fill, split, and merge.  A user selects those operations interactively to refine a 

given classified image.  The system observes those actions, and it retains information concerning the 

regions that were modified.  The collected information is stored in a domain knowledge database.  

When a user activates the run mode, our system automatically generates a set of rules based on its 

stored knowledge database.  This is illustrated in Figure 3.  A user, possibly a different person, can 

load a new image, and the system will automatically apply its rules to update the image.  Based on the 

geometric properties of those regions, the system selects operations and applies them.   

3.2 Decision Tree Construction 

A serious problem faced by designers of knowledge-based (“expert”) systems is the knowledge 

acquisition bottleneck.  Traditionally, a knowledge engineer works closely with a domain expert to 

develop rules and guidelines for a particular application.  The rules are encoded, and an inference 

engine (such as MYCIN-style reasoning) is used to analyze new inputs to the system.  Because this 

process is inherently difficult and time-consuming, active research efforts are in progress within the 

artificial intelligence community to automate the knowledge acquisition process (e.g., [2],[11],[14]).

For our postprocessing application, we have adopted a variation of supervised learning strategies in 

which the system can learn through observation of a domain expert.  Many different approaches to 

inductive inference could have been adopted in this study, including support vector machines, artificial 

neural networks, or explanation-based learning.  (For example, see ([1],[3],[7],[8],[9],[11],[21].)  In 

our current prototype, we have implemented an approach based on the induction of decision trees.

A decision tree is a graph-theoretic tree in which each interior node represents a decision point, 

conceptually incorporating an IF-THEN-ELSE statement, and each leaf node represents a final class 

label that should be assigned.  A decision tree can be used to encode knowledge for classifying 

objects, which are often presented in the form of vectors from a feature space.   

We have developed a strategy in which computed region properties, along with other image-related 

properties, comprise the feature space for decision tree induction.  As a simple example, consider 

region size and radial distance from the log center as two features that can be computed for a given 

region in an image.  It is possible to map any particular region onto a point in this feature space, and to 

assign a label indicating a desired action, such as “remove this region.”  This is illustrated in Figure 4, 

which depicts a hypothetical set of training vectors in a 2-dimensional feature space.  Information such 

as this can be obtained in a relatively straightforward manner in our system. 

With such a training set, it is possible to use information-theoretic methods to construct a decision 

tree that can select an action for all points in the feature space.  Among the most common systems for 

decision-tree induction are ID3, C4.5, CART, and MSM-T ([1], [24]).  All of these induction methods 
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create a classification tree by repeatedly subdividing the feature space, using linear univariate 

thresholds.  The result is a set of separating hyperplanes that are parallel to the feature-space axes, with 

resulting subsets forming a partition of the feature space.  Entropy measures are often used to select 

which feature variable to be considered at each node of the decision tree.

We have implemented a newer decision-tree inference approach, known as OC-SEP, which is based 

on the work of Street ([5],[22]).  This approach offers the advantage of “oblique” linear boundaries, 

which means that they are not constrained to be parallel to the feature axes (as illustrated in Figure 4b).  

Instead of measures based on entropy, the method uses orthogonality-based separation criteria for 

training vectors having different labels.  This tends to reduce the sizes of the resulting decision trees, at 

the expense of some additional computation at each node.   

User Interface

 Feature 
Extraction 

Domain 
Knowledge 
Database 

Postprocessing 
Operation 

Library 

 Inference 
 Engine 

Postprocessing operations

Figure 2:  System operation during learn mode.

User Interface

Feature 
Extraction 

Domain 
Knowledge 
Database 

Postprocessing 
Operation 

Library 

 Inference 
 Engine 

Postprocessing operations

Figure 3:  System operation during run mode.
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(a) (b) 

Figure 4.  Hypothetical training set for decision-tree induction in a 2-dimensional feature space.  (a) The two 

feature types are represented by x1 and x2, and the two class labels (e.g., “remove region” and 

“retain region”) are indicated by × and o.  (b) Linear decision boundaries have been placed in the 

feature space, separating the two types of training vectors.  In a “multicategory” system such as OC-

SEP, more than 2 classes are permitted. 

4. Results and Discussion 

We have developed a prototype system that illustrates the fundamental approach for learning 

postprocessing rules.  The user interface, shown in Figure 5, allows the user to select either learn mode 

or run mode for the session.  During learn mode, the user can select regions for modification.  For the 

example results shown here, the only action considered is region removal.  The user selects a particular 

“layer” to modify at any given time, where each layer of the image corresponds to a label assigned by 

the ANN (“knot,” “decay,” “split”, “bark,” or “clear wood”).  As the user removes particular regions, 

the system computes and stores information for each region (region size, radial distance, and layer 

type) in a feature table. 

When the user selects run mode, the system automatically calculates and stores feature vectors for 

the remaining regions in the image, and notes that these are examples of regions that should be 

retained.  The system then constructs a decision tree based on these training vectors.  When the user 

loads a new image to be postprocessed, the system automatically considers each region in the image, 

and consults the decision tree to determine which of those regions should be removed and which 

should be retained. 

As an example of system operation, Figure 6 shows a CT slice that was used to train the system.  

Beginning with the image in part (b) of the figure, the user removed several regions from the different 

layers to obtain the result shown in (c).  Because the image in (b) contains a total of 177 distinct 

foreground regions, the system automatically collected 177 feature vectors during the training session.  

The system then automatically constructed a decision tree using this information.   

Using this feature table in run mode, the system postprocessed several image slices.  (These images 

were not used in training the system.)  Three of these images are shown in Figure 7:  one from the 

same log (top row), and two from a different red oak log.  Column (b) contains images that were 

tentatively classified by an ANN, and column (c) presents images that were refined by our system 

automatically.   

x1 x1

x2x2
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For all three image slices, the removal of small regions has improved the quality of the results 

considerably.  For the example in the top row, several small split regions have been correctly removed 

from the center portion of the image.  Other spurious regions, incorrectly labeled split, decay, and clear 

wood, have been removed from the bark area.  Of particular interest is one narrow region incorrectly 

labeled decay, near the left edge of the log, that has been removed based on the rules encoded in the 

decision tree.   Although it may be difficult to see in the figure, this region is relatively large in area, 

and would not be removed by a filter based solely on small region size.  Our system has learned rules 

based on both size and distance from the center of the log slice, and that causes this region to be 

removed in spite of its size. 

The middle and bottom rows of this figure contain slices from a different log, with large decay 

regions near the center.  The ANN has incorrectly labeled several small regions as split and knot, and 

the postprocessing system has removed them.  The postprocessing system has also cleaned up the bark 

portion of these images considerably. 

As a final example, Figure 8 shows a postprocessed version of the image from Figure 1.  Most of the 

postprocessing operations were performed automatically and correctly, but for this case an additional 

unlearned operation was performed.  The large bark region near the top of the image, which borders 

the knot, is actually an extension of the correctly labeled bark region from the perimeter of the log. 

Hence, region removal is not appropriate in this case.  Instead, the system employed a “hard-coded” 

region-split operation, and we include this example as an illustration of the potential of the system to 

perform region modifications that are more sophisticated than simple region removal.  Work is 

currently in progress to automate the learning of this operation, as well as others. 

These results were obtained using a PC (Pentium 4, 1.13 GHz, 256 MB), and the system is 

implemented with Matlab (R13, version 6.5).  The postprocessing required approximately 10 seconds 

per image. As described earlier, the system is capable of incremental learning, which means that the 

user does not have to have available all training images initially.  This is possible because all training 

vectors are retained from all previous training sessions.  When converting to run mode, a full decision 

tree is computed from the full set of training vectors. 

Figure 5: Screen capture of the postprocessing system's user interface.  The input image appears on the left, 

and the classified image (being modified) is on the right.  In learn mode, the user modifies the 

segmented image interactively.  In run mode, as shown above, the system operates automatically.
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(a) (b) (c) 

Figure 6: The CT slice from a red oak log used for training. (a) Original CT image.  (b) Result from ANN 

classification.  (c) Result of postprocessing, obtained by manually modifying the image in (b).

(a) (b) (c) 

Figure 7: Classification results for three red oak log slices, taken from two different logs.  (a) The original CT 

images. (b) Initial classifications performed by ANN. (c) Automatic postprocessing results, in which 

many spurious regions have been removed. 
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(a) (b) (c) 

Figure 8: Classification results for the red oak slices from Figure 1. (a) The original CT image.

(b) Initial classifications performed by ANN. (c) The result of post-processing.  In addition to 

automatic learning, the system has applied a “hard-coded” operation to remove a portion of the 

large bark region near the top of the image. 

5. Conclusions 

This paper has introduced a new approach for refining images in which regions have been detected and 

labeled.  We have developed a prototype system that observes the actions of a human operator who 

interactively edits a set of test images.  The system then applies automated inferencing techniques to 

develop its own postprocessing rules based on those actions.  After this learning process, the system is 

capable of automatically applying similar refinement steps to other images. 

The system does not simply memorize a sequence of operations by the user, as is often used for 

robotic teach pendants.  Instead, the system develops more general rules based on labeled region 

properties, such as size, elongation, defect type, and position in the image.  Although this approach has 

been developed particularly for use with CT image slices of hardwood logs, it is sufficiently general 

that it can be used for other applications, such as refining aerial image classification. 
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